Woods Hole team finds subtropical waters flushing through Greenland fjord
Woods Hole Oceanographic Institute
Recent changes in ocean circulation in the North Atlantic are delivering larger amounts of subtropical waters to the high latitudes. A research team led by Fiamma Straneo, a physical oceanographer at Woods Hole Oceanographic Institution, found that subtropical waters are reaching Greenland's glaciers, driving melting and likely triggering an acceleration of ice loss. Melting ice also means more fresh water in the ocean, which could flood into the North Atlantic and disrupt a global system of currents, known as the Ocean Conveyor.
Waters from warmer latitudes — or subtropical waters — are reaching Greenland's glaciers, driving melting and likely triggering an acceleration of ice loss, reports a team of researchers led by Fiamma Straneo, a physical oceanographer from the Woods Hole Oceanographic Institution (WHOI).
"This is the first time we’ve seen waters this warm in any of the fjords in Greenland," says Straneo. "The subtropical waters are flowing through the fjord very quickly, so they can transport heat and drive melting at the end of the glacier."
Greenland's ice sheet, which is two-miles thick and covers an area about the size of Mexico, has lost mass at an accelerated rate over the last decade. The ice sheet's contribution to sea level rise during that time frame doubled due to increased melting and, to a greater extent, the widespread acceleration of outlet glaciers around Greenland.
While melting due to warming air temperatures is a known event, scientists are just beginning to learn more about the ocean's impact — in particular, the influence of currents — on the ice sheet.
(Continued here.)
Recent changes in ocean circulation in the North Atlantic are delivering larger amounts of subtropical waters to the high latitudes. A research team led by Fiamma Straneo, a physical oceanographer at Woods Hole Oceanographic Institution, found that subtropical waters are reaching Greenland's glaciers, driving melting and likely triggering an acceleration of ice loss. Melting ice also means more fresh water in the ocean, which could flood into the North Atlantic and disrupt a global system of currents, known as the Ocean Conveyor.
Waters from warmer latitudes — or subtropical waters — are reaching Greenland's glaciers, driving melting and likely triggering an acceleration of ice loss, reports a team of researchers led by Fiamma Straneo, a physical oceanographer from the Woods Hole Oceanographic Institution (WHOI).
"This is the first time we’ve seen waters this warm in any of the fjords in Greenland," says Straneo. "The subtropical waters are flowing through the fjord very quickly, so they can transport heat and drive melting at the end of the glacier."
Greenland's ice sheet, which is two-miles thick and covers an area about the size of Mexico, has lost mass at an accelerated rate over the last decade. The ice sheet's contribution to sea level rise during that time frame doubled due to increased melting and, to a greater extent, the widespread acceleration of outlet glaciers around Greenland.
While melting due to warming air temperatures is a known event, scientists are just beginning to learn more about the ocean's impact — in particular, the influence of currents — on the ice sheet.
(Continued here.)
Labels: climate change, global warming, Greenland, Woods Hole
0 Comments:
Post a Comment
<< Home