New evidence on how shifts in Earth’s orbit affect climate
1.5 million years of climate history revealed after scientists solve mystery of the deep
Posted by TANN
Archaeology News Network
Scientists have announced a major breakthrough in understanding the Earth’s climate machine by reconstructing highly accurate records of changes in ice volume and deep-ocean temperatures over the last 1.5 million years.
The study, which is reported in the journal Science, offers new insights into a decades-long debate about how the shifts in the Earth’s orbit relative to the sun have taken the Earth into and out of an ice-age climate.
Being able to reconstruct ancient climate change is a critical part of understanding why the climate behaves the way it does. It also helps us to predict how the planet might respond to man-made changes, such as the injection of large quantities of carbon dioxide into the atmosphere, in the future.
Unfortunately, scientists trying to construct an accurate picture of how such changes caused past climatic shifts have been thwarted by the fact that the most readily available marine geological record of ice-ages – changes in the ratio of oxygen isotopes (Oxygen 18 to Oxygen 16) preserved in tiny calcareous deep sea fossils called foraminifera – is compromised.
This is because the isotope record shows the combined effects of both deep sea temperature changes, and changes in the amount of ice volume. Separating these has in the past proven difficult or impossible, so researchers have been unable to tell whether changes in the Earth’s orbit were affecting the temperature of the ocean more than the amount of ice at the Poles, or vice-versa.
The new study, which was carried out by researchers in the University of Cambridge Department of Earth Sciences, appears to have resolved this problem by introducing a new set of temperature-sensitive data. This allowed them to identify changes in ocean temperatures alone, subtract that from the original isotopic data set, and then build what they describe as an unprecedented picture of climatic change over the last 1.5 million years – a record of changes in both oceanic temperature and global ice volume.
Posted by TANN
Archaeology News Network
Scientists have announced a major breakthrough in understanding the Earth’s climate machine by reconstructing highly accurate records of changes in ice volume and deep-ocean temperatures over the last 1.5 million years.
The study, which is reported in the journal Science, offers new insights into a decades-long debate about how the shifts in the Earth’s orbit relative to the sun have taken the Earth into and out of an ice-age climate.
Being able to reconstruct ancient climate change is a critical part of understanding why the climate behaves the way it does. It also helps us to predict how the planet might respond to man-made changes, such as the injection of large quantities of carbon dioxide into the atmosphere, in the future.
Unfortunately, scientists trying to construct an accurate picture of how such changes caused past climatic shifts have been thwarted by the fact that the most readily available marine geological record of ice-ages – changes in the ratio of oxygen isotopes (Oxygen 18 to Oxygen 16) preserved in tiny calcareous deep sea fossils called foraminifera – is compromised.
This is because the isotope record shows the combined effects of both deep sea temperature changes, and changes in the amount of ice volume. Separating these has in the past proven difficult or impossible, so researchers have been unable to tell whether changes in the Earth’s orbit were affecting the temperature of the ocean more than the amount of ice at the Poles, or vice-versa.
The new study, which was carried out by researchers in the University of Cambridge Department of Earth Sciences, appears to have resolved this problem by introducing a new set of temperature-sensitive data. This allowed them to identify changes in ocean temperatures alone, subtract that from the original isotopic data set, and then build what they describe as an unprecedented picture of climatic change over the last 1.5 million years – a record of changes in both oceanic temperature and global ice volume.
0 Comments:
Post a Comment
<< Home