Too complex to exist
By Duncan Watts
Boston Globe
June 14, 2009
ON AUG. 10, 1996, a single power line in western Oregon brushed a tree and shorted out, triggering a massive cascade of power outages that spread across the western United States. Frantic engineers watched helplessly as the crisis unfolded, leaving nearly 10 million people without electricity. Even after power was restored, they were unable to explain adequately why it had happened, or how they could prevent a similar cascade from happening again - which it did, in the Northeast on Aug. 14, 2003.
Over the past year we have experienced something similar in the financial system: a dramatic and unpredictable cascade of events that has produced the economic equivalent of a global blackout. As governments struggle to fix the crisis, experts have weighed in on the causes of the meltdown, from excess leverage, to lax oversight, to the way executives are paid.
Although these explanations can help account for how individual banks, insurers, and so on got themselves into trouble, they gloss over a larger question: how these institutions collectively managed to put trillions of dollars at risk without being detected. Ultimately, therefore, they fail to address the all-important issue of what can be done to avoid a repeat disaster.
Answering these questions properly requires us to grapple with what is called "systemic risk." Much like the power grid, the financial system is a series of complex, interlocking contingencies. And in such a system, the biggest risk of all - that the system as a whole might fail - is not related in any simple way to the risk profiles of its individual parts. Like a downed tree, the failure of one part of the system can trigger an unpredictable cascade that can propagate throughout the entire system.
(More here.)
Boston Globe
June 14, 2009
ON AUG. 10, 1996, a single power line in western Oregon brushed a tree and shorted out, triggering a massive cascade of power outages that spread across the western United States. Frantic engineers watched helplessly as the crisis unfolded, leaving nearly 10 million people without electricity. Even after power was restored, they were unable to explain adequately why it had happened, or how they could prevent a similar cascade from happening again - which it did, in the Northeast on Aug. 14, 2003.
Over the past year we have experienced something similar in the financial system: a dramatic and unpredictable cascade of events that has produced the economic equivalent of a global blackout. As governments struggle to fix the crisis, experts have weighed in on the causes of the meltdown, from excess leverage, to lax oversight, to the way executives are paid.
Although these explanations can help account for how individual banks, insurers, and so on got themselves into trouble, they gloss over a larger question: how these institutions collectively managed to put trillions of dollars at risk without being detected. Ultimately, therefore, they fail to address the all-important issue of what can be done to avoid a repeat disaster.
Answering these questions properly requires us to grapple with what is called "systemic risk." Much like the power grid, the financial system is a series of complex, interlocking contingencies. And in such a system, the biggest risk of all - that the system as a whole might fail - is not related in any simple way to the risk profiles of its individual parts. Like a downed tree, the failure of one part of the system can trigger an unpredictable cascade that can propagate throughout the entire system.
(More here.)
0 Comments:
Post a Comment
<< Home